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Macro Analysis of the Electro-Adsorption Process in Low
Concentration NaCl Solutions for Water Desalination Applications
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Capacitive deionization (CDI) has become a very attractive desalination technology due to its capability of returning a fraction of
the input energy during the regeneration of its adsorbent electrodes. As in any separation technique, analysis of the mass transfer
phenomena occurring in this water treatment method is vital to evaluate and extend the performance of a desalination system. This
publication proposes a novel method to estimate the net electro-adsorption rate of a CDI cell from a series of low concentration
desalination experiments coupled with a one-dimensional electro-adsorption model. In the proposed methodology, a one-dimensional
model is presented and two regimes are identified based on the presence or absence of a convection-diffusion layer within the bulk
solution, as dictated by the electro-diffusion based Peclet number. For each of these regimes, the net adsorption flux is calculated
based on the velocity at which ions are transported toward the electrodes. The proposed model is then solved, first under the
assumption of an infinite electrode adsorption capacitance before relaxing this condition, and correlated against the experimental
data to assess the global electro-adsorption rate. The analysis in this paper also provides unique physical insight into the macro-scale
mass transfer processes that control desalination in CDI.
© 2013 The Electrochemical Society. [DOI: 10.1149/2.025303jes] All rights reserved.
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The extraction of dissolved charged particles from relatively low
concentration solutions by electro-adsorption methods has gained in-
terest in recent years. In the 1960s, the removal of ions from a solution
stream by applying an electric potential to electrodes with large sur-
face areas was initially proposed as a water desalination technique.1–3

However, three decades passed before the development of carbon
materials with a suitable high surface area allowed ionic sorption
methods to become competitive with traditional techniques such as
reverse osmosis and flash water desalination.3–6 Utilizing this technol-
ogy, capacitive deionization (CDI) has been proposed as a less energy
intensive desalination method due to the recovery of a fraction of the
input energy during a regeneration stage.

Figure 1 shows a schematic of a CDI system. During system op-
eration, a stream of ionic solution flows between two high surface
area carbon electrodes while an applied electric potential draws the
ions out of the bulk solution. Adsorption of ions on the electrodes’
surfaces decreases the salt concentration of the outlet solution until
the saturation of the electrodes necessitates the regeneration of the
system. This may be performed by either applying a second electric
potential of inverse polarity or by short-circuiting the electrodes.7 In
this regeneration stage, the previously adsorbed ions are expelled into
the effluent stream enabling the recovery of a fraction of the input en-
ergy. This paper focuses on the analysis of the ion extraction process
prior to the regeneration of the electrodes.

Several available publications provide a general understanding of
the fundamental physics behind adsorption processes in electrochem-
ical systems. Early models of the ionic adsorption process for a porous
electrode used the species conservation and Nernst-Planck equations,
while assuming a steady polarization or a capacitive adsorption of
ions at the solution-electrode interface.1,8 Recent modifications to
these models include the use of Poisson’s equation, the consideration
of the electrical double layer structure on the ionic adsorption,9–11 and
the transient non-linear adsorption response to the applied electric
potential.12,13

Despite the above-mentioned publications, the body of literature
lacks a methodology to estimate the net adsorption rate of a CDI
system. General models of adsorption processes in electrochemical
systems commonly focus on the interactions between the electrode
matrix and the solution within the pores and not on the transport
of ions in the bulk solution.1,8,12–14 More specifically published pa-
pers on CDI assume an ideally stirred solution within a unit cell9

or approximate important parameters (such as Stern capacitance, a
transport coefficient, or a chemical attraction energy) by best fitting
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the temporal variation of the outlet solution concentration obtained
from the compilation of a full desalination-regeneration cycle.9–11,15

This procedure however, might provide misleading estimates because
the temporal variation of outlet solution conductivity is sensitive
to a diverse range of variables such as the inclusion of remnant
ions from previous desalination cycles during regeneration,16,17 the
state of the electrodes,18,19 and the sensitivity of the conductivity
probes employed. Additionally, there is a large sensitivity of the out-
let conductivity profile to the solution flow rate, as this paper will
show.

This paper presents a one-dimensional mass conservation analysis
of the electro-adsorption process within the desalination cell under
two electro-adsorption regimes and two different electrode satura-
tion conditions. Initially, the electro-adsorption process was modeled
based on the extension of the mass transport mechanisms within the
CDI cell as in a fully developed and developing convective diffu-
sive layer regimes. Then, two electrode saturation scenarios were
considered: an infinite and finite electrode adsorption capacity. The
infinite adsorption capacitance scenario assumes that the effects of ion
accumulation within the electrode are minimal on the global electro-
adsorption rate. Building from this analysis, saturation effects re-
sulting from ion accumulation in the electrodes are then considered,
which affect the electro-adsorption rate within the cell in space and
time. The increased complexity of this model required the implemen-
tation of a numerical algorithm to fully characterize the operating
conditions.

Figure 1. Capacitive deionization system. Schematic of a desalination (top)
and regeneration (bottom) processes in a capacitive deionization cell.
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Figure 2. Schematic of the concentration variation within capacitive deion-
ization cell. Representation of the three distinctive mass transfer regions:
(1) electrode-solution interface and (2) bulk solution. The sub region (2A)
convective-diffusive layer is also presented.

Background

After applying an electric potential between the electrodes of a CDI
cell, the creation of concentration and electro-static potential gradi-
ents across the desalination cell drive a net flow of ions toward their
respective counter electrodes. The dynamics of the electro-adsorption
process have been studied previously for flat and porous electrode in
a stagnant solution.12,13 From this research, three distinctive regions
(shown in Fig. 2) can be identified during the desalination process.
The electrode matrix-solution interface (Region 1) is where ions are
adsorbed and consists of the electrical double layer; over time, the ion
adsorption will decrease due to the shielding of the electric potential
by the ions in the electrodes. Next to this interface, occupying the rest
of the space between electrodes, there is a bulk concentration region
(Region 2) characterized by its electro-neutrality. Within this region,
a sub-region (Sub-region 2A) commonly known as the convective-
diffusive layer12,20 can be identified where mass transfer effects are
important.

Upon the application of the electric potential (initially acting across
the entire thickness of the electrode), the selective transport of dis-
solved ions in different directions produces a gradient of concentra-
tions between the electrodes. Conversely, the developed gradient of
concentrations also affects the electric potential distribution produc-
ing a combined transport mechanism driven by an electric potential
and a molar concentration gradient. These two transport mechanisms
will act together until the electrical double layer is fully developed,
and the applied electric potential is completely shielded. After this
point, only molar concentration diffusion drives further variations of
the ionic concentration profile.

The rate at which ions are drawn from the bulk solution varies as
concentration changes in the convective-diffusive layer region. Fol-
lowing the application of the electric potential, the counter ion con-
centration at the edge of the convective-diffusive layer (in the vicinity
of the electrode-solution interface) significantly decreases as ions are
adsorbed. The concentration in this depleted sub-region would later
increase as the ionic adsorption continues at the electrode-solution
interface and saturation effects become important. This variation in
the concentration gradient between the electrode solution interface
and the bulk solution decreases the net rate of ionic extraction from
the bulk solution due to the smaller molar concentration diffusion.

In here it is assumed that the molar ionic adsorption rate in one
electrode is identical in the other, except for the difference in charge
polarity. This assumption is reasonable in the bulk dilute solution
when there are only two ionic species of equal charge number present
(Na+ and Cl− for example), and the difference in mass and ionic
radius effects are neglected. Consequently, the molar concentration
of each ion is equal to the salt concentration in the bulk solution
(quasi-neutral solution). The exception to this is the electrode-solution
interface (where the electrical double layer is formed), which retains
a net charge from ion accumulation meaning that electro-neutrality is

Figure 3. Experimental set-up. Schematic and picture of the capacitive deion-
ization experimental set-up at the Multi-scale Thermal Fluids Laboratory.

not conserved.20 The analysis of this region, however, is outside the
scope of this publication.

Experimental Set-Up and Procedure

A laboratory-scale CDI system was designed and operated in the
Multiscale Thermal Fluids Laboratory at The University of Texas at
Austin. The hydraulic circuit of this system consists of a constant
flow rate syringe pump, Harvard Apparatus PHD-2000, in line with
an Omega FLR-1601A-V2 flowmeter, a desalination cell, two eDAQ
Flow-Thru ET908 conductivity probes located at the cell inlet and
outlet, an outflow reservoir, and one Omega PX409-001DWUV dif-
ferential pressure transducer to measure the pressure drop across the
cell. The CDI cell itself incorporates two pieces of 2.54 × 25.4 cm
high-surface carbon paper Grade II (600 m2 · g−1) from Marketech
International each of which is in contact with two highly conductive
titanium electrodes. A polymer mesh of 2 mm thickness separates the
two pieces of carbon paper allowing the flow of the electrolyte solu-
tion between them. This mesh also firmly secures the contact of each
carbon paper piece with its respective titanium electrode by pressing
one against the other when the CDI cell is assembled. The external
electric potential is supplied by an Agilent E3647A power supply,
which also measured the electric current applied during desalination.
Figure 3 shows a picture of the desalination cell and a schematic of
the complete system.

The work presented here focuses on the treatment of dilute solu-
tions (<8.556 mol · m−3 or <0.5 mg · cm−3) in an effort to analyze
separately the adsorption process of ions from the electrode saturation
effects. Therefore, the results obtained from the analysis of dilute so-
lutions can be extended to industrial scale systems where the available
electrode area is considerably larger and the transience before satura-
tion might involve a significant percentage of the operation time.

During the experiments performed for this work, dilute solutions of
0.428, 0.856, and 1.283 mol · m−3 (0.025, 0.050, and 0.075 mg · cm−3

respectively) were flowed through the desalination cell at a predeter-
mined rate until the inlet and outlet conductivity measurements were
stable. Once these readings were steady, an external electrical poten-
tial of 1.0 V was applied between the electrodes. Some time after the
application of this electric potential, the outlet solution conductivity
decreases monotonically down to a minimum value where it would
remain constant until electrode saturation effects are significant. The
minimum conductivity achieved would be recorded separately as it
will be used later to determine the averaged adsorption rates. As the
saturation of the electrode becomes significant, the outlet solution
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ionic concentration would increase back to its original value. After
this point, the application of the electric potential is terminated. It
is important to note that when analyzing the collected data, the time
between the electric potential application and the decrease in outlet
solution conductivity needs to be corrected to take into account the
delay cause by the tubing volume between the desalination cell outlet
and the conductivity probe.

The following section presents and briefly discusses the results
of various experiments conducted following the procedure described
above for different flow rates (from 0.05 to 170 cm3 · min−1). A more
exhaustive analysis of the results requires the development of a model
(section Modelling). Following the introduction of this model, ana-
lytical and numerical solutions will be obtained and later compared
to the experimental CDI performance (section Model Solutions and
Analysis).

Experimental Results

A set of desalination experiments using solutions of 0.428, 0.856,
and 1.283 mol · m−3 (0.025, 0.050, and 0.075 mg · cm−3 respectively)
were conducted at various flow rates following the procedure outlined
in the previous section. Figure 4 shows the time variation of the
solution concentrations at low and intermediate flow rates. In this
figure the solution concentration and time were normalized by the
inlet solution concentration, C0 {mol · m−3}, and convective time,
tconv {s}, respectively. The convective time represents the time that a

Figure 4. Experimental results: Variation of the concentration of a
1.283 mol · m−3. The solution concentration and time are standardized us-
ing the inlet concentration and convective time (time for an ion to pass through
the cell) respectively for: (Top) 0.05, 0.1 and 0.2 cm3 · min−1 showing a steady
minimum concentration, (Bottom) 0.8, 2.5, and 10.0 cm3 · min−1 showing
saturation effects as concentrations increase.

Figure 5. Variation of the minimum outlet to inlet concentration ratio and an-
alytical solutions of the proposed model. Comparison of experimental and
analytical solutions for high and low Peed regimes for 0.428, 0.856 and
1.283 mol · m−3.

particle would take to flow through the cell and is calculated by the
ratio of cell volume to solution flow rate.

The quasi-steady minimum concentration (evident at low flow rates
as shown in Fig. 4a) validates the use of dilute solutions to analyze
the adsorption process by neglecting the electrode saturation effects.
Conversely, by comparing Figs. 4a and 4b, it can be noted that at
increasing flow rates the transition to saturation effects becomes more
evident because minimum concentration does not remain constant
for a significant time. This is caused by the larger amount of ions
introduced in the cell per unit time as the solution flow rate increases.
For each experiment, the minimum ratio of outlet and inlet solution
concentrations was recorded and listed in Table I and shown in Fig. 5.
The results obtained show high flow rate sensitivity, and a non-intuitive
concentration independent behavior of the minimum ratio between
the outlet and inlet solution concentrations in this type of systems
(an approximation of CDI flow-through cell with infinite adsorption
capacitance or those treating low concentration solutions).

For the error analysis, the procedure outlined by Figliola and
Beasley21 was applied to the solution flow rate as well as the out-
let to inlet concentration ratios. The error in the flow rate, δQ, was
determined considering the uncertainties in the input of the syringe
diameter when setting the pump, δd (0.1 mm), as well as the pump
displacement velocity accuracy, δp, (1% from the manufacturer cata-
log). Subsequently, the variance estimated for the flow rate was 1.1%.
For the concentration values, the sources of uncertainty considered
were the errors inherent to the calibration of the conductivity probes
and the accuracy of the probe itself, which were propagated to find
the error in Cbulk-exit/C0 estimations.

The following section presents a one-dimensional model of the
electro-adsorption process within a CDI cell operating at two distinct
mass transfer regimes: developing and fully developed convective-
diffusive layer regimes. This model was developed to predict the
performance of the CDI cell and provide a better insight into the
transport mechanisms in this system. Later, in section Model Solutions
and Analysis, the solutions of this model are presented, first under the
assumption of an infinite adsorption capacitance, and later relaxing
this supposition. Finally, also in section Model Solutions and Analysis,
a novel methodology to estimate the net rate of adsorption based on
experimental results is introduced and the transient performance of a
CDI lab-scale cell is compared between experiments and simulations.

Modeling

In a flow-by CDI cell, the bulk advection of ions in the flow di-
rection would compete with their transport toward the electrodes.
As mentioned before, mass transfer toward the electrodes is most
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significant in the convective-diffusive layer. This section presents a
general model of a one-dimensional electro-adsorption process of a
CDI cell for two different regimes of this layer: fully developed and
developing. First, in subsection One dimensional adsorption model,
the general Nernst-Planck equation is simplified for an electro-neutral
solution and a large mass Peclet number, Pem, scenario. Then, in
subsection Fully developed and developing convective-diffusive layer
regimes, the average net molar flux of ions is modeled independently
for fully developed and developing convective-diffusive layer regimes.
Finally, subsection Developing and fully developed convective diffu-
sive layer criterion introduces an electro-diffusion based Peclet num-
ber, Peed, to resolve the dominant ionic transport mechanism within
the bulk solution and serve as a criterion to determine the development
of the convective diffusive layer.

One dimensional adsorption model.— A general analysis of the
transport of charged particles in a dilute solution, influenced by con-
centration and electric potential gradients, can be performed using the
conservation of species and Nernst-Planck equations:

∂Ci

∂t
= −∇(−υi zi FCi∇φ − Di∇Ci + uCi) + Ri , [1]

where Ci is the molar concentration of the ionic species i {mol · m−3},
υi is the mobility of the ionic species i {mol · s · kg−1}, zi is the
charge number of species i, F is the Faraday’s constant (9.65
×10−4 C · mol−1), φ is the electrostatic potential {V}, Di is the molar
diffusivity of the ionic species i{m2 · s−1}, u is the bulk fluid velocity
at the location of interest {m · s−1}, and Ri is the volumetric species i
production rate {mol · s−1}.

Under the assumption of electro-neutrality, i.e. considering that
no net charge exists in the region under analysis, the net flux
of ions driven by electric potential and concentration gradients,
−∇(−υi FCi∇φ − Di∇Ci ), can be combined and expressed as a con-
centration gradient transport phenomenon represented by: Def f ∇2Ci ,
where Deff is the effective diffusion coefficient which includes both,
the electric potential driven motion and the molar diffusion effects.20

Therefore, the transport of charged particles in a dilute electro-neutral
binary electrolyte can be described by:

∂Ci

∂t
= ∇e f f ∇2Ci − u∇Ci + Ri , [2]

where, as in Eq. 1, Ci is the molar concentration of the ionic species
i {mol · m−3}, Deff is the effective diffusion coefficient {m2 · s−1}
introduced in the previous paragraph, and u is the bulk fluid velocity
{m · s−1}.

To further simplify the analysis of a desalination cell as a one-
dimensional model, a hydraulic fully developed scenario is assumed
and the concept of bulk solution concentration is introduced. Also, any
electric potential gradient as well as molecular diffusion of ions in the
flow direction (X-direction in Figs. 1 and 2) are assumed negligible.
The bulk solution concentration of the ionic species i, Cbulk-i, for a
hydraulically fully developed flow is defined in a similar manner to
bulk temperature22,23 as:

Cbulk−i (x) = w

Q

H∫
0

Ci (x, y)U (y)dy, [3]

where w is the width of the desalination cell {m}, Q is the solution flow
rate within the cell, {m3 · s−1}, H is the separation between electrodes
{m}, and U(y) is the velocity distribution of the solution across the
cell (Y-direction in Figs. 1 and 2) {m · s−1}.

Neglecting the electric potential gradients in the flow direction
can be intuitive as it is expected that the electric potential gradients
normal to the flow are significantly larger due to the small separation
between electrodes. Thus, the transport of ions in the X-direction (flow
direction) would be primarily driven by the bulk flow advection and
the molar diffusion. The relative importance of one or another of these
mechanisms can be compared by evaluating the mass transfer Peclet

number, Pem, defined as:

Pem = Q · L

w · H · Di
, [4]

where L {cm} is the desalination cell length. For all the experiments
conducted in this paper, Pem was larger than 1×104 (for a DNaCl

= 1.24×10−5 cm · s−120), and consequently, advection dominated the
transports of ions in the flow direction.

The transport of ionic species within the CDI cell, previously
described by Eq. 2, can now be modeled as a one-dimensional species
conservation equation as:

∂Cbulk−i

∂t
= −Q

H · w
· ∂Cbulk−i

∂x
− jads−i

H
. [5]

Here, jads-i represents net molar flux of ionic species i
{mol · cm−2 · s−1} adsorbed from the bulk solution and is expected
to vary along the cell. Note that in this expression, the transport of
ions within the electro-neutral bulk solution (in the X-direction and
represented in the first term of the right hand side) has been separated
from the net adsorption flux of charged particles toward the electrodes
(in the Y-direction and represented by the second term of the right
hand side). In other words, the model is one-dimensional with the
bulk concentration only being dependent on the X-direction, with the
cross-cell transport in the Y-direction being treated as a production
(destruction in this case) rate term.

Building upon this one-dimensional model, in the next section
the adsorption flux, jads, is modeled for two distinctive convective-
diffusive layer regimes.

Fully developed and developing convective-diffusive layer
regimes.— In a flow-through CDI cell, the bulk advection of ions
in the flow direction would compete with their transport toward the
electrodes. As mentioned before, the sub-region within the bulk solu-
tion where mass transfer toward the electrodes is significant is called
the convective-diffusive layer and has been used to model the electro-
adsorption of ions in this type of system.9,12,24–26 The analysis of this
convective diffusive layer can be performed at the two regimes shown
in Fig. 6: fully developed and developing.
Fully developed convective-diffusive layer.—When the convective-
diffusive layer is fully developed, the transport of ions within the
bulk solution toward their respective counter ions is significant and
uniform throughout the whole bulk solution. Subsequently, as ions
at the edge of the bulk solution region are electro-adsorbed onto the
electrodes, the ions between the electrodes would “rapidly rearrange”
significantly decreasing the concentration gradients normal to the flow
direction. Therefore, the net average molar flux of ions from the bulk
solution at a specific location along the cell is modeled for this scenario
as:

jads(x) = Cbulk(x) · vads, [6]

Figure 6. Schematic of the fully developed and developing convective-
diffusive layers. Representation of the ionic concentration profiles at low (top)
and high (bottom) Peed regimes.
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where vads is the net adsorption velocity or the rate at which ions would
migrate toward the electrode {m · s−1}. Similarly to the diffusion co-
efficient and electro-mobility, vads is assumed to be concentration
independent for dilute solutions and consequently is constant along
the cell.
Developing convective-diffusive layer.—Mass adsorption effects
within a desalination cell at large flow rates were assumed to be
confined to the developing convective-diffusive layer. The rationale
behind this approach is that at large flow rates, ions in the flow
core would not be able to significantly migrate toward the electrical
double layers as they are carried downstream out of the cell. There-
fore, the region where mass transfer effects are important is confined
next to the electrode-solution interfaces, and only the small portion of
charged particles near the electrodes would be adsorbed. The Nernst
Layer approximation is a common approximation made to model this
limited region where mass transfer is important. This approximation
assumes a linear gradient of concentrations across this film as shown
in Fig. 6. Under the Nernst Layer approximation, the net adsorption
flux of an impermeable electrodes cell can be described by:20

jads(x) = Def f
C0 − Cedge

δD(x)
. [7]

Here jads is the net molar flux at which ions are adsorbed from
the bulk solution {mol · m−2 · s−1}, CO is the inlet solution molar
concentration {mol · m−3} and which remains constant out of the
Nernst layer, Cedge is the molar concentration at the bottom of the
Nernst layer (next to the solution-electrode interface) {mol · m−3},
δD is the Nernst Layer thickness {m}, and x is the distance from the
cell entrance to the section of interest in the flow direction {m}. Note
that for the analysis of a system with infinite adsorption capacitance
electrodes, Cedge is zero as the accumulation of charge at the electrode-
solution interface and its immediate surroundings is negligible.

In Eq. 7, the effective diffusion coefficient and the X-dependent
Nernst layer thickness can be grouped together to define the net ad-
sorption velocity, vads, in a developing convective-diffusive layer as:

vads(x) = Def f

δD(x)
. [8]

As a first approximation, the growth of the Nernst layer thickness
in a CDI cell with infinite adsorption capacitance is assumed to be
similar to the one in a channel flow with soluble walls (case analyzed
by Probstein20):

δD(x)

x
= 1.289

(
H

x

)2/3 (
Def f

U · H

)1/3

. [9]

Here, U is the average flow velocity {cm · s−1} and H is the channel
thickness {cm}. Note that the Nernst Layer thins as the flow rate
increases.

Introducing this relationship into Eq. 8, and replacing the average
flow velocity by the ratio of the solution flow rate, Q, and the CDI cell
cross sectional area, w · H, reveals the dependence of the X-dependent
net adsorption velocity, vads, on the solution flow rate:

vads(x) = 0.776

(
Def f

H

)2/3 (
Q

x · w

)1/3

[10]

It must be stressed that in a developing convective-diffusive layer,
the net adsorption velocity, vads, is X-dependent as it aims to account
for the transport of ions through a thin, growing, and limited region
(Nernst layer) where concentration gradients are significant. On the
other hand, in a fully developed convective-diffusive layer regime,
this velocity represents the net transport of ions across the entire bulk
solution and is constant along the cell. It is therefore expected that
vads would be larger in a developing than in a fully developed regime
due to the larger concentration gradients across the thin Nernst layer
typical of developing convective-diffusive layers.

Returning to the net adsorption flux for developing convective-
diffusive layers, assuming infinite adsorption capacitance electrodes

and introducing Eq. 10 into Eq. 7 when Cedge = 0, the net molar
adsorption flux can be expressed as:

jads(x) = 0.776 · C0 ·
(

Def f

H

)2/3 (
Q

w · x

)1/3

. [11]

This concludes the model of the X-dependent net molar adsorption
flux, jads, at developing and fully developed regimes. Next, we intro-
duce a criterion to determine whether the convective system under
analysis is in a developing or fully developed regime.

Developing and fully developed convective diffusive layer
criterion.— Estimating the thickness of the convective-diffusive layer
at the exit of the cell (using Eq. 9), and comparing it with the separa-
tion between electrodes, would verify the suitability of a developing
or fully developed convective-diffusive layer assumption. Looking at
Eq. 9, the electro-diffusion Peclet number, Peed, may be defined as:

Peed = U · H

Def f
. [12]

This parameter can determine whether or not the convective-
diffusive layer is fully developed. Developing regimes would have
a large Peed (as they are characterized by a large average solution
velocity) while fully developed regimes would present a low Peed.
However, the use of this dimensionless number requires prior knowl-
edge of Deff or its estimation from experimental data. As an alternative
to determining the effective diffusivity, it is proposed here to use the
ratio of the net adsorption velocity, vads, to the average bulk velocity,
U , as the characteristic parameter to evaluate the development of the
convective-diffusive layer. From Eqs. 8 and 9, the ratio of the con-
vective convective-diffusive layer thickness to electrode separation is:

δD(x)

H
= 1.463 ·

(
vads(x) · x

U · H

)1/2

. [13]

This expression was derived from the Nernst layer approximation
of a thin and developing convective-diffusive layer in a channel with
soluble walls.20 Consequently, it is expected that a constant average net
adsorption velocity (defined in the Appendix), vads , can substitute the
X-dependent net adsorption velocity without losing much accuracy in
the approximation.

The next section (Model Solutions and Analysis) presents the solu-
tions of the model on each regime for two distinctive cases: when the
electrode saturation effects are neglected and a quasi-steady condition
is assumed, and when these two conditions are relaxed.

Model Solutions and Analysis

This section presents the solutions of the model introduced above
for the low and high Peed regimes corresponding to fully developed
and developing convective-diffusive layer. First, in subsection Infinite
adsorption capacitance (steady state) solution, a steady and infinite
electrode adsorption capacitance scenario is assumed to obtain ana-
lytical solutions for Eq. 5. Then, the net adsorption velocity at a fully
developed and developing convective-diffusive regimes are estimated
comparing the solutions obtained and experimental results of the min-
imum exit to inlet concentration ratios in subsection Net adsorption
velocity estimation at low and high Peed. Finally, the steady and in-
finite adsorption capacitance assumptions are relaxed, and a finite
difference algorithm is used to solve Eq. 5 numerically to estimate the
time behavior of the outlet solution concentration in subsection Finite
adsorption capacitance (transient) solution.

Infinite adsorption capacitance (steady state) solution.— When
steady and infinite adsorption capacitances are assumed, it is possible
to analytically solve the one-dimensional model presented in Eq. 5, 6,
and 11.
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Low Peed regime.—Initial analysis considered a fully developed
convective-diffusive layer (or low Peed) regime where convection of
the ions in the flow direction dominates their movement within the
cell. Substituting Eq. 6 into Eq. 5 and solving the resulting differential
equation, the ratio of the bulk concentration of the outlet and inlet
concentrations is:

Cbulk−exi t

C0
= exp

(−vads · w · L

Q

)
. [14]

High Peed regime.—In a developing convective-diffusive layer regime,
the electro-adsorption toward the electrodes is comparable to the ad-
vection of ions by the bulk solution. Assuming steady state conditions,
and substituting the net average molar flux of ions from Eq. 11 into
the one-dimensional model (Eq. 5), the bulk solution concentration at
the exit of the desalination cell is given by:

Cbulk−exi t

Co
= 1 − 1.164 ·

(
Def f · w · L

H · Q

)2/3

. [15]

After introducing the average net adsorption velocity (vads) defined
in the Appendix, Eqs. 11 and 15 can be rewritten as:

jads(x) = 2

3
· vads−re f · C0

(
L · Q

x · Qref

)1/3

, [16]

Cbulk−exi t

Co
= 1 −

(
w · L · vads−re f

Q2/3 · Q1/3
re f

)
, [17]

where vads−re f {m · s−1} is the average net adsorption velocity at
reference flow rate Qref {m3 · s−1}. The Appendix presents a more
detailed derivation of Eqs. 16 and 17 for the interested reader.

Equations 14 and 17 show the suitability of estimating the refer-
ence average net adsorption velocity, vads−re f , and the net adsorption
velocity, vads, (at high and low Peed regimes respectively) by evaluat-
ing the ratio of outlet to inlet concentrations of dilute solutions. The
procedure to follow to determine these two velocities is outlined in
the following subsection.

Net adsorption velocity estimation at low and high Peed.— This
subsection outlines the procedure followed to determine the net ad-
sorption velocity, vads (at a low Peed regime), and the reference average
net adsorption velocity, vads−re f (at a high Peed regime), from an iter-
ation process that minimizes the root mean square error between the
results from Eqs. 14 and 17, and the experiments described in section
Experimental Set-Up and Procedure. The minimization of the mean
squared error was employed as an optimization parameter to estimate
the velocities that best describe the experiments.
Low Peed regime.—For a fully developed convective-diffusive layer
regime, a value of vads is assumed and introduced into Eq. 14 to cal-
culate the ratio Cbulk-exit/C0 at various flow rates within a pre-selected
range of values. The ratio of concentrations obtained is then compared
with their corresponding experimental values for each flow rate and
the root-mean-squared error between the predicted ratios and those
measured at different flow rates in the preselected range. This proce-
dure is repeated for different values of vads until the root-mean-squared
error is minimized. The net adsorption velocity assigned to the sys-
tem at a low Peed regime would be the one employed to obtain this
minimum.

At this point, a question might arise about the range of flow rates
picked for this estimation and whether or not they correspond to a
fully develop or low Peed regime. In this publication, this range was
also methodically varied. As a first estimation, the lowest four flow
rates at which experiments were conducted were analyzed. Further
variations in the range of flow rates used would include the addition
of immediately higher flow rate. On each range, the net adsorption
velocity was optimized, and a minimum root-mean-square error was
obtained. The final flow rate range and vads selected would represent
the lowest root-mean-squared error.

Following the procedure described above, the optimum net ad-
sorption velocity obtained was 2.50 × 10−4 cm · s−1 with a root-mean-
squared error of 10.63. This estimation was obtained in a flow rate
range from 0.05 to 0.5 cm3 · min−1 (Peed<70). From Eq. 15, the Nernst
layer becomes fully developed (δD = H/2) at 0.29 and 2.9 cm from
the cell entrance at 0.05 to 0.5 cm3 · min−1 respectively, i.e. more than
88.6% of the cell length would be fully developed. This validates the
initial assumption of a fully developed convective-diffusive layer (low
Peed)
High Peed regime.—In a high Peed regime the reference average net
adsorption velocity is determined by comparing the ratios of the outlet
and inlet solution concentrations with the analytical solution of the
proposed one-dimensional model given in Eq. 17. This time however,
two parameters would need to be optimized in this analysis: the refer-
ence average net-adsorption velocity, vads−re f , and its respective flow
rate, Qref. The modified procedure also starts by selecting a range of
high flow rates where the optimization will be performed. The lowest
flow rate in this chosen range is designated as Qref and the optimiza-
tion algorithm is applied to vary vads−re f in the analytical solution
(Eq. 17) until the root-mean-squared error with the experimental data
is minimized. As in the low Peed regime analysis, the flow rate range
where this optimization process was conducted is also changed. As
a first estimation, the highest four flow rates at which experiments
were conducted were analyzed. Additional increment in this range
would include the immediately lower flow rate. The optimal vads−re f

was determined at the range with the lowest root-mean-squared
error.

The reference average net adsorption velocity, vads−re f , was esti-
mated as 4.70×10−4 cm · s−1 with a root-mean-squared error of 4.53
for flow rates between 10 and 168 cm3 · min−1 (Peed > 1.1×103).
The reference flow rate for this high Peed regime was 10 cm3 · min−1.
In this developing convective-diffusive layer range, the Nernst layer
thickness grows up to 0.09 to 0.02 cm respectively (45% and 10% of
the distance between electrodes) validating the initial assumption of
a developing convective-diffusive layer.

Figure 5 shows the agreement between the ratios of outlet to in-
let solution concentrations obtained experimentally as well as the
analytical solutions for low and high Peed regimes (Eqs. 14 and 17 re-
spectively) for the net adsorption velocities estimated in this section.
At flow rates lower than 0.5 cm3 · min−1 the desalination percentages
predicted by the low Peed model falls within the confidence interval in
most of the experiments while the high Peed model predicts negative
values. This situation is inversed between 10 to 100 cm3 · min−1 where
the low Peed model overestimates the desalination percentages while
the high Peed model successfully estimates them within the experimen-
tal variance. Last, at very large flow rates (120 and 170 cm3 · min−1),
both models predictions fall within the experimental data confidence
interval. Under these high flow rates and Peed conditions, the varia-
tion in the outlet solution concentration is smaller than the confidence
range of the experiments. However, the high Peed model predictions
are closer to the mean of the data in this range as compared to the low
Peed model.

Attempting to quantify the percentage error between the model pre-
dictions and experimental results at low flow rates (low Peed regime)
would be misleading since the estimated experimental error is larger
than or close to both, the nominal measurement and the model predic-
tion. For example, at 0.05 cm3 · min−1, the low Peed model prediction
and experimental measurement at 1.283 mol · m3 were 3.0 × 10−9 and
0.018 ± 0.027 respectively. For flow rates ≥ 10 cm3 · min−1 (high
Peed regime), the average error between the model predictions and
experiments was 3.38%.

This concludes the analysis of the one-dimensional model and its
analytical solutions under the steady and infinite adsorption capaci-
tance assumptions. In the following subsection, these two conditions
are relaxed.

Finite adsorption capacitance (transient) solution.— In general,
the relaxation of the infinite capacitance assumption requires the
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introduction of a changing net average molar adsorption flux as a func-
tion of amount of ions adsorbed and, consequently, the ionic concen-
tration at the solution-electrode interface, Cinterface {mol · cm−3}.12,13

As more ions are pulled from the bulk solution and accumulated at
the electrode-solution interface, the electrical double layer would be
developed and the applied electric potential would be shielded at the
solution-electrode interface decreasing the transport of ions driven by
the weakened electric field within the solution. Parallel to this, the
accumulation of ions in the electrode solution interface will affect the
concentration difference between this interface and the bulk solution
further decreasing the net average flux of ions from the bulk solution
to the electrode.

This section introduces the accumulation of ions and the fi-
nite adsorption capacitance effects in the model of jads for low
Peed and high Peed regimes by decreasing this net flux. This ad-
justment was made by introducing the time-dependent factor (1-
Ninterface/Nmax) in the net molar adsorption flux models (Eqs. 6
and 11). Here Ninterface and Nmax represent the amount of ions ac-
cumulated in the electrode-solution interface, and the maximum
amount of ions that can be adsorbed respectively. The introduction
of this time dependent coefficient makes necessary the use of nu-
merical methods to solve the one-dimensional model presented in
Eq. 5 for fully developed and developing convective-diffusive layer
regimes.

Before proceeding to compare the transient behavior of the concen-
tration obtained experimentally with the numerical model predictions,
it must be noted that the conductivity probe has a delayed response to
highly transient concentration changes such as those encountered at
the beginning of the desalination cycle. These initial effects have been
accounted for in the numerical solutions by the addition of a delayed
response similar to that of the probe.
Low Peed regime.—In a fully developed convective-diffusive layer
regime with finite adsorption capacitance, the one-dimensional model
introduced in Eqs. 5 and 6 can be discretized using a first order finite
difference algorithm forward in time (explicit) and backward in space
as:

Ct+1
bulk− j − Ct

bulk− j

�t
= Q

w · H

(
Ct

bulk−( j−1) − Ct
bulk− j

�x

)

− Ct
bulk− j · v0

ads

(
1 − N t

inter f ace− j

Nmax

)
, [18]

where �x {m} is the differential element length of the uniformly
discretized cell (in the flow direction), �t {s} the duration of each time
step of the simulation, vo

ads {m · s−1} is the net adsorption velocity
assuming an infinite adsorption capacitance in the electrodes, Ninterface-j

{mol} is the accumulated amount of ions absorbed in the element j,
and Nmax-j {mol} is finite capacity of ions that can be adsorbed in the
element j. For this manuscript, Nmax-j was obtained for every flow rate
and concentration modeled by dividing the experimental total number
of moles adsorbed by the total number of elements in which the
cell was numerically discretized). The subscripts and superscripts in
Eq. 18 denote the discrete location in the flow direction and the discrete
time instants respectively.

Figure 7 shows the agreement between the experimental results
and the solution of Eq. 18 when vo

ads = 2.50 × 10−4 cm · s−1 (esti-
mated on the infinite adsorption capacitance and low Peed model) to
predict the dimensionless concentration variation of a 1.283 mol · m−3

(0.075 mg · cm−3) solution at three different flow rates (0.1, 0.4, and
1.6 cm3 · min−1).
High Peed regime.—Similarly to the low Peed regime, the one-
dimensional adsorption model (Eq. 5) and the net molar adsorption
flux model (Eq. 16) can be combined and numerically discretized us-
ing a finite difference algorithm forward in time (explicit) and back-

Figure 7. Numerical solution of the one-dimensional model at low Peed. Com-
parison of the experimental (solid line) and predicted (dashed line) concentra-
tion with time for a 1.283 mol · m−3 at 0.1, 0.6, and 1.6 cm3 · min−1.

ward in space as:

Ct+1
bulk− j − Ct

bulk− j

�t

= Q

w · H

(
Ct

bulk−( j−1) − Ct
bulk− j

�x

)
− vads−re f ·

(
2

3

)(
C0

H

)

×
(

Q · L

Qref · ( j · �x)

)1/3 (
1 − N t

inter f ace− j

Nmax

)
[19]

where vads−re f and Qref are the reference average net adsorption ve-
locity and its respective reference flow rate estimated above under the
infinite adsorption capacitance assumption (subsection Net adsorp-
tion velocity estimation at low and high Peed; High Peed regime). Also,
as in the low Peed regime, Ninterface-j and Nmax-j are the accumulated
amount of ions absorbed and maximum capacity of ions that can be
adsorbed in the element j respectively.

Figure 8 shows the agreement between the experimental results
and the solution of Eq. 19 when vads−re f = 4.70 × 10−4 cm · s−1

and Qref = 10 cm3 · min−1 are used to estimate the dimensionless
outlet solution concentration variation of a 1.283 mol · m−3 (0.075
mg · cm−3) solution at 10, 20, and 50 cm3 · min−1

Equations 18 and 19 were solved using a numerical model de-
veloped in MATLAB. The model proved to be time and space steps
independent at �x = 0.5 cm and �t = 0.1 s with an averaged varia-
tion lower than 0.2% when these two quantities were reduced in half.

Figure 8. Numerical solution of the one-dimensional model at high Peed.
Comparison of the experimental (solid line) and predicted (dashed line) con-
centration with time for a 1.283 mol · m−3 at 10, 20, and 50 cm3 · min−1.
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Although the scheme used in this work is a first order approximation
(the error of the model will be reduced proportional to the reduction
of the discretized element size), the computational cost and error ob-
tained using the above mentioned discretization parameters remained
low. Future change to a two- or three-dimensional model might re-
quire the use of a higher order scheme to improve the accuracy of the
model.

Conclusions

In this paper, a novel methodology to determine the ionic adsorp-
tion velocity in a CDI cell was introduced. First, a one-dimensional
model for a CDI cell was presented and a simplified model of the
net molar adsorption flux, jads, was introduced for high and low Peed

regimes providing physical insight into the difference in these operat-
ing conditions. In this regard, the net adsorption velocity was defined
for both regimes, and an optimization procedure to estimate this ve-
locity from experimental data was proposed.

The analytical solutions obtained by assuming steady state and
negligible saturation effects were used to determine the net adsorption
velocity at low and high Peed regimes. Experimental results showed
that the time concentration profiles do not remain constant at the min-
imum values for intermediate and high flow rates as was expected
for infinite adsorption capacity electrodes. However, the agreement
between the analytical and experimental minimum outlet to inlet con-
centration ratios suggests that the error from this assumption would
not be detrimental for very dilute solutions. Therefore, the analysis
of low concentration solutions allows the determination of the char-
acteristic ionic transport velocities following the methodology of this
publication.

The net adsorption velocity was estimated for two different flow
rate ranges. Calculating the thickness of the region where mass trans-
fer effects are significant validated the adequacy of the flow rates
selected to describe the low and high Peed regimes (Peed < 70 and
Peed > 1100 respectively). The reference average net adsorption ve-
locity estimated at the large Peed (4.70 × 10−4 cm · s−1) was larger than
the one determined at a low Peed regime (2.50 × 10−4 cm · s−1). This
difference appears to arise due to the thinner Nernst layer encountered
at higher flow rates, which causes a larger concentration gradient and
a net molar flux.

The ionic transport velocities estimated were input into a numer-
ical model, which relaxes the steady state and negligible saturation
assumptions and accurately mimics the experimental results. It was
seen that for low concentrations, electrical double layer shielding
could be modeled as a decrease in the molar adsorption flux, jads,
which in this model is linearly related to the electrode ionic concen-
tration. This conclusion is supported by the test results at low and high
Peed regimes in Figs. 7 and 8.

The models accurately predicted the minimum outlet to inlet solu-
tion concentration ratios, as well as the concentration time variation
concentration shown in Figs. 5, 7, and 8, suggesting that the low
and high Peed models developed are applicable when the solution
flow rates are <1 and >10 cm3 · min−1 respectively (Peed < 100 and
Peed > 1000 accordingly). It is expected that at intermediate flow rates
(1–10 cm3 · min−1) the low and high Peed models bound the behavior
of the system, which is indeed the case as depicted in Fig. 5. Future
work will test the model and methodology proposed in this paper
with brackish concentrations to validate the transport velocities and
electrical double layer shielding models.

Among the sources of error between the models and experimental
data are: the use of the Nernst layer approximation (linearization of
the concentration profile within the convective-diffusive layer), the
one-dimensional simplification of the model, the inherent numerical
error of a first order approximation, and the accuracy and resolution
of the instrumentation (conductivity sensors, flowmeter, and syringe
pump).

The methodology to determine the net adsorption velocity and the
molar adsorption flux model developed in this paper provide both
temporal and spatial information about the concentration profiles in-

side the CDI cell. Therefore, it might be used as a tool to evaluate the
performance of existing CDI systems and possibly to design and scale
new systems.
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Appendix - Determination of the average adsorption velocity
(High Peed regimes)

In this appendix, we show in detail the definition of the average net adsorption velocity
and the derivation of the adsorption flux in terms of this introduced variable. We start our
discussion with Eq. 10 from the paper:

vads (x) = 0.776

(
Def f

H

)2/3 (
Q

x · w

)1/3

. [A.1]

where vads {cm · s−1} is the net adsorption velocity at hi Peed regimes, Deff is the effective
diffusion coefficient, {cm2 · s−1}, Q is the flow rate {cm3 · s−1}, H is the channel thickness
{cm}, w is the channel width {cm}, and x is the distance from the cell entrance to the
section of interest in the flow direction {cm}.Under the infinite electrode adsorption
capacity assumption, the adsorption flux can be estimated as:

jads (x) = CO · vads (x) [A.2]

where CO is the inlet solution concentration {mol · m−3}, which remains constant out
of the convective diffusive layer along the total length of the cell, L {cm}. The average
net adsorption velocity, vads , is defined to make the adsorption flux constant and X-
independent while conserving the total rate of ions adsorbed along the whole CDI cell:

CO · vads · w · L =
∫
L

CO · vads (x) · w·dx [A.3]

Substituting Eq. A.1 into A.3, and simplifying:

vads = 0.776

(
3

2

)(
Def f

H

)2/3 (
Q

L · w

)1/3

[A.4]

Assuming a constant flow rate Q, and effective diffusivity Deff, the average net adsorption
velocity, vads , can be presented as a function of a reference average net adsorption velocity,
and the flow rate at which it occurs:

vads = vads−re f

(
Q

Qref

)1/3

[A.5]

Finally, combining Eqs. A.1, A.4, and A.5, the X-dependent adsorption velocity can be
expressed as:

vads = vads−re f

(
Q · L

Qref · x

)1/3 (
2

3

)
[A.6]

Equation A.6 is the relation used to derive Eqs. 16 and 19 in this manuscript.

List of Symbols

Latin letters

zi Charge number of species i
u Bulk fluid velocity at the location of interest {cm · s−1}
w Width of the desalination cell {cm}
jads Net molar adsorption flux {mol · cm−2 · s−1}
x Distance from the cell entrance to the section of interest

in the flow direction {cm}
vads Net adsorption velocity {cm · s−1}
Ci Molar concentration of the ionic species i {mol · cm−3}
F Farady’s constant (9.65×10−4 C · mol−1}
Di Molar diffusivity of species i {cm2 · s−1}
Ri Volumetric species i production rate {mol · cm−3 · s−1}
Deff Effective diffusion coefficient {cm2 · s−1}
Cbulk-i Bulk solution concentration of the ionic species i

{mol · cm−3}
Cbulk-exit Bulk solution concentration at the exit of the cell

{mol · cm−3}
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Q Solution flow rate within the cell {cm3 · s−1}
U Velocity the solution across the cell {cm · s−1}
H Separation between electrodes {cm}
L Desalination cell length {cm}
Pem Mass transfer Peclet number
CO Inlet solution molar concentration {mol · cm−3}
Cedge Molar concentration at the bottom of the Nernst layer

{mol · cm−3}
Rex Reynold’s number
Sc Schimdt number
Qref Reference flow rate{cm3 · s−1}
Peed Electro-diffusion Peclet number
Ninterface Amount of ions accumulated in the electrode-solution

interface {mol}
Nmax Maximum number of ions that can be adsorbed in the

electrode {mol}
vads Average net adsorption velocity {cm · s−1}
vads−re f Average reference net adsorption velocity {cm · s−1}
U Average flow velocity {cm · s−1}
�x Length of a discretized element in a finite difference

algorithm {cm}
�t Time step in a finite difference algorithm {s}

Greek letters

υi Mobility of the ionic species i {mol · s · kg−1}
φ Electrostatic potential {V}
δD Nernst Layer thickness {cm}
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